Problems that the electric motor may suffer

Electric motor may suffer from: low insulation resistance or bearing heating / motor overheating

The electric motor can present many problems and these problems appear in the most diverse parts of the electric motor in a common way, because it is a machine that is operating in an interrupted way.

When the electric motor exhibits low insulation resistance changes, it means that the electric motor may be with damaged groove insulation; The cabins may be cut; The bobbin head may be contacting the casing; There may be presence of moisture or chemical agents or even presence of dust on the winding.

Overheating of the electric motor or heating of the bearings may occur due to: excessive axial or radial stress of the belt; Bent shaft; Loose or decentralized covers; Lack or excess grease; Foreign matter in the grease; Obstructed ventilation or have a smaller fan; The voltage or frequency may be out of specification; The rotor is crawling or failing; The stator is without impregnation; The overload; The bearing defective; Consecutive games; Air gap below specified; The capacitor remains unsuitable or improperly connected.

Electric motor of alternating current has as principle of operation the magnetic flux

The alternating current electric motor has as its principle the magnetic flux both in time and space (sinusoidal), so as to produce a force in the air gap and this causes the rotor to rotate with defined torque.

By analyzing the loss equations, it is necessary to verify that there are ways to reduce the magnetic losses in the electric motor and this can decrease both losses through hysteresis and dynamic losses.

The reduction of this hysteresis loss in the electric motor involves metallurgy and materials, but there are processes in the production of electric machines that have a direct influence on the loss as the stamping of the blades, the heat treatment, the pressure exerted on the blades and many others.

When losses in the electric motor skf 61905 2rz are called dynamic losses, you can reduce reducing the thickness of the blade or even increasing the electrical resistance of the electric motor by incorporating silicon into the steel. When all these factors are optimized, all that remains is to improve all the details that are considered constructive in the electric motor.